Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Cell Discov ; 10(1): 9, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263404

RESUMEN

Viral proteases and clinically safe inhibitors were employed to build integrated compact regulators of protein activity (iCROP) for post-translational regulation of functional proteins by tunable proteolytic activity. In the absence of inhibitor, the co-localized/fused protease cleaves a target peptide sequence introduced in an exposed loop of the protein of interest, irreversibly fragmenting the protein structure and destroying its functionality. We selected three proteases and demonstrated the versatility of the iCROP framework by validating it to regulate the functional activity of ten different proteins. iCROP switches can be delivered either as mRNA or DNA, and provide rapid actuation kinetics with large induction ratios, while remaining strongly suppressed in the off state without inhibitor. iCROPs for effectors of the NF-κB and NFAT signaling pathways were assembled and confirmed to enable precise activation/inhibition of downstream events in response to protease inhibitors. In lipopolysaccharide-treated mice, iCROP-sr-IκBα suppressed cytokine release ("cytokine storm") by rescuing the activity of IκBα, which suppresses NF-κB signaling. We also constructed compact inducible CRISPR-(d)Cas9 variants and showed that iCROP-Cas9-mediated knockout of the PCSK9 gene in the liver lowered blood LDL-cholesterol levels in mice. iCROP-based protein switches will facilitate protein-level regulation in basic research and translational applications.

2.
Nucleic Acids Res ; 51(5): e28, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36625292

RESUMEN

Precise control of the delivery of therapeutic proteins is critical for gene- and cell-based therapies, and expression should only be switched on in the presence of a specific trigger signal of appropriate magnitude. Focusing on the advantages of delivering the trigger by inhalation, we have developed a mammalian synthetic gene switch that enables regulation of transgene expression by exposure to the semi-volatile small molecule acetoin, a widely used, FDA-approved food flavor additive. The gene switch capitalizes on the bacterial regulatory protein AcoR fused to a mammalian transactivation domain, which binds to promoter regions with specific DNA sequences in the presence of acetoin and dose-dependently activates expression of downstream transgenes. Wild-type mice implanted with alginate-encapsulated cells transgenic for the acetoin gene switch showed a dose-dependent increase in blood levels of reporter protein in response to either administration of acetoin solution via oral gavage or longer exposure to acetoin aerosol generated by a commercial portable inhaler. Intake of typical acetoin-containing foods, such as butter, lychees and cheese, did not activate transgene expression. As a proof of concept, we show that blood glucose levels were normalized by acetoin aerosol inhalation in type-I diabetic mice implanted with acetoin-responsive insulin-producing cells. Delivery of trigger molecules using portable inhalers may facilitate regular administration of therapeutic proteins via next-generation cell-based therapies to treat chronic diseases for which frequent dosing is required.


Asunto(s)
Acetoína , Diabetes Mellitus Experimental , Transgenes , Animales , Ratones , Acetoína/administración & dosificación , Proteínas Bacterianas , Secuencia de Bases , Diabetes Mellitus Experimental/terapia , Factores de Transcripción/metabolismo , Administración por Inhalación
3.
Small ; 18(41): e2202566, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36084222

RESUMEN

Biopharmaceutical manufacturing requires specialized facilities and a long-range cold supply chain for the delivery of the therapeutics to patients. In order to produce biopharmaceuticals in locations lacking such infrastructure, a production process is designed that utilizes the trigger-inducible release of large quantities of a stored therapeutic protein from engineered endocrine cells within minutes to generate a directly injectable saline solution of the protein. To illustrate the versatility of this approach, it is shown that not only insulin, but also glucagon-like peptide 1 (GLP-1), nanoluciferase (NLuc), and the model biopharmaceutical erythropoietin (EPO) can be trigger-inducibly released, even when using biologically inactive insulin as a carrier. The facilitating beta cells are engineered with a controllable TRPV1-mediated Ca2+ influx that induces the fusion of cytoplasmic storage vesicles with the membrane, leading to the release of the stored protein. When required, the growth medium is exchanged for saline solution, and the system is stimulated with the small molecule capsaicin, with a hand-warming pack, or simply by using sunlight. Injection of insulin saline solution obtained in this way into a type-1 diabetes mouse model results in the regulation of blood glucose levels. It is believed that this system will be readily adaptable to deliver various biopharmaceutical proteins at remote locations.


Asunto(s)
Productos Biológicos , Eritropoyetina , Animales , Glucemia/metabolismo , Capsaicina , Péptido 1 Similar al Glucagón/metabolismo , Insulina , Ratones , Fragmentos de Péptidos , Solución Salina , Luz Solar
4.
Nat Commun ; 12(1): 6786, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34811361

RESUMEN

The main (Mpro) and papain-like (PLpro) proteases encoded by SARS-CoV-2 are essential to process viral polyproteins into functional units, thus representing key targets for anti-viral drug development. There is a need for an efficient inhibitor screening system that can identify drug candidates in a cellular context. Here we describe modular, tunable autoproteolytic gene switches (TAGS) relying on synthetic transcription factors that self-inactivate, unless in the presence of coronavirus protease inhibitors, consequently activating transgene expression. TAGS rapidly report the impact of drug candidates on Mpro and PLpro activities with a high signal-to-noise response and a sensitivity matching concentration ranges inhibiting viral replication. The modularity of the TAGS enabled the study of other Coronaviridae proteases, characterization of mutations and multiplexing of gene switches in human cells. Mice implanted with Mpro or PLpro TAGS-engineered cells enabled analysis of the activity and bioavailability of protease inhibitors in vivo in a virus-free setting.


Asunto(s)
SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , Animales , Antivirales/uso terapéutico , Ratones , Replicación Viral/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
5.
Science ; 368(6494): 993-1001, 2020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32467389

RESUMEN

Sophisticated devices for remote-controlled medical interventions require an electrogenetic interface that uses digital electronic input to directly program cellular behavior. We present a cofactor-free bioelectronic interface that directly links wireless-powered electrical stimulation of human cells to either synthetic promoter-driven transgene expression or rapid secretion of constitutively expressed protein therapeutics from vesicular stores. Electrogenetic control was achieved by coupling ectopic expression of the L-type voltage-gated channel CaV1.2 and the inwardly rectifying potassium channel Kir2.1 to the desired output through endogenous calcium signaling. Focusing on type 1 diabetes, we engineered electrosensitive human ß cells (Electroß cells). Wireless electrical stimulation of Electroß cells inside a custom-built bioelectronic device provided real-time control of vesicular insulin release; insulin levels peaked within 10 minutes. When subcutaneously implanted, this electrotriggered vesicular release system restored normoglycemia in type 1 diabetic mice.


Asunto(s)
Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/terapia , Estimulación Eléctrica/instrumentación , Secreción de Insulina/genética , Células Secretoras de Insulina/metabolismo , Tecnología Inalámbrica/instrumentación , Animales , Biónica , Canales de Calcio Tipo L/genética , Señalización del Calcio , Ingeniería Celular , Células HEK293 , Humanos , Masculino , Ratones , Canales de Potasio de Rectificación Interna/genética , Prótesis e Implantes , Transcripción Genética , Transgenes
6.
Nucleic Acids Res ; 46(18): 9864-9874, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30219861

RESUMEN

Trigger-inducible transgene expression systems are utilized in biopharmaceutical manufacturing and also to enable controlled release of therapeutic agents in vivo. We considered that free fatty acids (FFAs), which are dietary components, signaling molecules and important biomarkers, would be attractive candidates as triggers for novel transgene switches with many potential applications, e.g. in future gene- and cell-based therapies. To develop such a switch, we rewired the signal pathway of human G-protein coupled receptor 40 to a chimeric promoter triggering gene expression through an increase of intracellular calcium concentration. This synthetic gene switch is responsive to physiologically relevant FFA concentrations in different mammalian cell types grown in culture or in a bioreactor, or implanted into mice. Animal recipients of microencapsulated sensor cells containing this switch exhibited significant transgene induction following consumption of dietary fat (such as Swiss cheese) or under hyperlipidaemic conditions, including obesity, diabetes and lipodystrophy.


Asunto(s)
Ácidos Grasos no Esterificados/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Receptores Acoplados a Proteínas G/genética , Transgenes/genética , Fosfatasa Alcalina/sangre , Fosfatasa Alcalina/metabolismo , Animales , Células CHO , Línea Celular , Línea Celular Tumoral , Cricetinae , Cricetulus , Ácidos Grasos no Esterificados/síntesis química , Células HEK293 , Células HeLa , Humanos , Masculino , Ratones Endogámicos C57BL , Receptores Acoplados a Proteínas G/metabolismo
7.
Cell ; 174(2): 259-270.e11, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-29937224

RESUMEN

Many community- and hospital-acquired bacterial infections are caused by antibiotic-resistant pathogens. Methicillin-resistant Staphylococcus aureus (MRSA) predisposes humans to invasive infections that are difficult to eradicate. We designed a closed-loop gene network programming mammalian cells to autonomously detect and eliminate bacterial infections. The genetic circuit contains human Toll-like receptors as the bacterial sensor and a synthetic promoter driving reversible and adjustable expression of lysostaphin, a bacteriolytic enzyme highly lethal to S. aureus. Immunomimetic designer cells harboring this genetic circuit exhibited fast and robust sense-and-destroy kinetics against live staphylococci. When tested in a foreign-body infection model in mice, microencapsulated cell implants prevented planktonic MRSA infection and reduced MRSA biofilm formation by 91%. Notably, this system achieved a 100% cure rate of acute MRSA infections, whereas conventional vancomycin treatment failed. These results suggest that immunomimetic designer cells could offer a therapeutic approach for early detection, prevention, and cure of pathogenic infections in the post-antibiotic era.


Asunto(s)
Biomimética/métodos , Staphylococcus aureus Resistente a Meticilina/fisiología , Infecciones Estafilocócicas/prevención & control , Fosfatasa Alcalina/sangre , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Animales , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Pruebas Antimicrobianas de Difusión por Disco , Femenino , Células HEK293 , Humanos , Receptores de Lipopolisacáridos/genética , Lisostafina/metabolismo , Lisostafina/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Plásmidos/genética , Plásmidos/metabolismo , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/veterinaria , Receptor Toll-Like 1/genética , Receptor Toll-Like 2/genética , Receptor Toll-Like 6/genética , Factor de Transcripción AP-1/metabolismo
8.
Nat Biomed Eng ; 2(2): 114-123, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-31015627

RESUMEN

Current treatment options for chronic pain are often associated with dose-limiting toxicities, or lead to drug tolerance or addiction. Here, we describe a pain management strategy, based on cell-engineering principles and inspired by synthetic biology, consisting of microencapsulated human designer cells that produce huwentoxin-IV (a safe and potent analgesic peptide that selectively inhibits the pain-triggering voltage-gated sodium channel NaV1.7) in response to volatile spearmint aroma and in a dose-dependent manner. Spearmint sensitivity was achieved by ectopic expression of the R-carvone-responsive olfactory receptor OR1A1 rewired via an artificial G-protein deflector to induce the expression of a secretion-engineered and stabilized huwentoxin-IV variant. In a model of chronic inflammatory and neuropathic pain, mice bearing the designer cells showed reduced pain-associated behaviour on oral intake or inhalation-based intake of spearmint essential oil, and absence of cardiovascular, immunogenic and behavioural side effects. Our proof-of-principle findings indicate that therapies based on engineered cells can achieve robust, tunable and on-demand analgesia for the long-term management of chronic pain.


Asunto(s)
Aromaterapia , Mentha spicata/química , Neuralgia/terapia , Animales , Femenino , Formaldehído/toxicidad , Células HEK293 , Humanos , Mentha spicata/metabolismo , Ratones , Ratones Endogámicos C57BL , Canal de Sodio Activado por Voltaje NAV1.7/genética , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Neuralgia/inducido químicamente , Neuralgia/metabolismo , Odorantes , Aceites Volátiles/química , Umbral del Dolor , Prótesis e Implantes , Sonicación , Venenos de Araña/genética , Venenos de Araña/metabolismo , Venenos de Araña/toxicidad , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/uso terapéutico
9.
Nat Biomed Eng ; 1(1): 0005, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28480128

RESUMEN

By using tools from synthetic biology, sophisticated genetic devices can be assembled to reprogram mammalian cell activities. Here, we demonstrate that a self-adjusting synthetic gene circuit can be designed to sense and reverse the insulin-resistance syndrome in different mouse models. By functionally rewiring the mitogen-activated protein kinase (MAPK) signalling pathway to produce MAPK-mediated activation of the hybrid transcription factor TetR-ELK1, we assembled a synthetic insulin-sensitive transcription-control device that self-sufficiently distinguished between physiological and increased blood insulin levels and correspondingly fine-tuned the reversible expression of therapeutic transgenes from synthetic TetR-ELK1-specific promoters. In acute experimental hyperinsulinemia, the synthetic insulin-sensing designer circuit reversed the insulin-resistance syndrome by coordinating expression of the insulin-sensitizing compound adiponectin. Engineering synthetic gene circuits to sense pathologic markers and coordinate the expression of therapeutic transgenes may provide opportunities for future gene- and cell-based treatments of multifactorial metabolic disorders.

10.
Science ; 354(6317): 1296-1301, 2016 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-27940875

RESUMEN

Chronically deregulated blood-glucose concentrations in diabetes mellitus result from a loss of pancreatic insulin-producing ß cells (type 1 diabetes, T1D) or from impaired insulin sensitivity of body cells and glucose-stimulated insulin release (type 2 diabetes, T2D). Here, we show that therapeutically applicable ß-cell-mimetic designer cells can be established by minimal engineering of human cells. We achieved glucose responsiveness by a synthetic circuit that couples glycolysis-mediated calcium entry to an excitation-transcription system controlling therapeutic transgene expression. Implanted circuit-carrying cells corrected insulin deficiency and self-sufficiently abolished persistent hyperglycemia in T1D mice. Similarly, glucose-inducible glucagon-like peptide 1 transcription improved endogenous glucose-stimulated insulin release and glucose tolerance in T2D mice. These systems may enable a combination of diagnosis and treatment for diabetes mellitus therapy.


Asunto(s)
Glucemia/metabolismo , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 2/terapia , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animales , Biomimética , Calcio/metabolismo , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Ingeniería Celular , Diabetes Mellitus Experimental/terapia , Péptido 1 Similar al Glucagón/genética , Células HEK293 , Humanos , Hiperglucemia/terapia , Secreción de Insulina , Células Secretoras de Insulina/trasplante , Transcripción Genética , Transgenes
11.
J Hepatol ; 65(1): 84-94, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27067456

RESUMEN

BACKGROUND & AIMS: The liver performs a panoply of complex activities coordinating metabolic, immunologic and detoxification processes. Despite the liver's robustness and unique self-regeneration capacity, viral infection, autoimmune disorders, fatty liver disease, alcohol abuse and drug-induced hepatotoxicity contribute to the increasing prevalence of liver failure. Liver injuries impair the clearance of bile acids from the hepatic portal vein which leads to their spill over into the peripheral circulation where they activate the G-protein-coupled bile acid receptor TGR5 to initiate a variety of hepatoprotective processes. METHODS: By functionally linking activation of ectopically expressed TGR5 to an artificial promoter controlling transcription of the hepatocyte growth factor (HGF), we created a closed-loop synthetic signalling network that coordinated liver injury-associated serum bile acid levels to expression of HGF in a self-sufficient, reversible and dose-dependent manner. RESULTS: After implantation of genetically engineered human cells inside auto-vascularizing, immunoprotective and clinically validated alginate-poly-(L-lysine)-alginate beads into mice, the liver-protection device detected pathologic serum bile acid levels and produced therapeutic HGF levels that protected the animals from acute drug-induced liver failure. CONCLUSIONS: Genetically engineered cells containing theranostic gene circuits that dynamically interface with host metabolism may provide novel opportunities for preventive, acute and chronic healthcare. LAY SUMMARY: Liver diseases leading to organ failure may go unnoticed as they do not trigger any symptoms or significant discomfort. We have designed a synthetic gene circuit that senses excessive bile acid levels associated with liver injuries and automatically produces a therapeutic protein in response. When integrated into mammalian cells and implanted into mice, the circuit detects the onset of liver injuries and coordinates the production of a protein pharmaceutical which prevents liver damage.


Asunto(s)
Hígado/lesiones , Animales , Ácidos y Sales Biliares , Enfermedad Hepática Inducida por Sustancias y Drogas , Humanos , Hepatopatías , Ratones , Biología Sintética
12.
Proc Natl Acad Sci U S A ; 113(5): 1244-9, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26787873

RESUMEN

Graves' disease is an autoimmune disorder that causes hyperthyroidism because of autoantibodies that bind to the thyroid-stimulating hormone receptor (TSHR) on the thyroid gland, triggering thyroid hormone release. The physiological control of thyroid hormone homeostasis by the feedback loops involving the hypothalamus-pituitary-thyroid axis is disrupted by these stimulating autoantibodies. To reset the endogenous thyrotrophic feedback control, we designed a synthetic mammalian gene circuit that maintains thyroid hormone homeostasis by monitoring thyroid hormone levels and coordinating the expression of a thyroid-stimulating hormone receptor antagonist (TSHAntag), which competitively inhibits the binding of thyroid-stimulating hormone or the human autoantibody to TSHR. This synthetic control device consists of a synthetic thyroid-sensing receptor (TSR), a yeast Gal4 protein/human thyroid receptor-α fusion, which reversibly triggers expression of the TSHAntag gene from TSR-dependent promoters. In hyperthyroid mice, this synthetic circuit sensed pathological thyroid hormone levels and restored the thyrotrophic feedback control of the hypothalamus-pituitary-thyroid axis to euthyroid hormone levels. Therapeutic plug and play gene circuits that restore physiological feedback control in metabolic disorders foster advanced gene- and cell-based therapies.


Asunto(s)
Modelos Animales de Enfermedad , Redes Reguladoras de Genes , Genes Sintéticos , Enfermedad de Graves/genética , Hipófisis/fisiopatología , Glándula Tiroides/fisiopatología , Animales , Células Cultivadas , Retroalimentación , Enfermedad de Graves/fisiopatología , Humanos , Ratones , Hormonas Tiroideas/sangre
13.
Sci Transl Med ; 7(318): 318ra201, 2015 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-26676608

RESUMEN

Psoriasis is a chronic inflammatory skin disease characterized by a relapsing-remitting disease course and correlated with increased expression of proinflammatory cytokines, such as tumor necrosis factor (TNF) and interleukin 22 (IL22). Psoriasis is hard to treat because of the unpredictable and asymptomatic flare-up, which limits handling of skin lesions to symptomatic treatment. Synthetic biology-based gene circuits are uniquely suited for the treatment of diseases with complex dynamics, such as psoriasis, because they can autonomously couple the detection of disease biomarkers with the production of therapeutic proteins. We designed a mammalian cell synthetic cytokine converter that quantifies psoriasis-associated TNF and IL22 levels using serially linked receptor-based synthetic signaling cascades, processes the levels of these proinflammatory cytokines with AND-gate logic, and triggers the corresponding expression of therapeutic levels of the anti-inflammatory/psoriatic cytokines IL4 and IL10, which have been shown to be immunomodulatory in patients. Implants of microencapsulated cytokine converter transgenic designer cells were insensitive to simulated bacterial and viral infections as well as psoriatic-unrelated inflammation. The designer cells specifically prevented the onset of psoriatic flares, stopped acute psoriasis, improved psoriatic skin lesions and restored normal skin-tissue morphology in mice. The antipsoriatic designer cells were equally responsive to blood samples from psoriasis patients, suggesting that the synthetic cytokine converter captures the clinically relevant cytokine range. Implanted designer cells that dynamically interface with the patient's metabolism by detecting specific disease metabolites or biomarkers, processing their blood levels with synthetic circuits in real time, and coordinating immediate production and systemic delivery of protein therapeutics may advance personalized gene- and cell-based therapies.


Asunto(s)
Trasplante de Células/métodos , Ingeniería Genética/métodos , Terapia Genética/métodos , Interleucina-10/biosíntesis , Interleucina-4/biosíntesis , Lógica , Psoriasis/terapia , Piel/metabolismo , Aminoquinolinas , Animales , Células CHO , Cricetulus , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Imiquimod , Mediadores de Inflamación/metabolismo , Interleucina-10/genética , Interleucina-10/inmunología , Interleucina-4/genética , Interleucina-4/inmunología , Interleucinas/genética , Interleucinas/metabolismo , Ratones Endogámicos C57BL , Psoriasis/inducido químicamente , Psoriasis/genética , Psoriasis/inmunología , Psoriasis/metabolismo , Psoriasis/patología , Reproducibilidad de los Resultados , Transducción de Señal , Piel/inmunología , Piel/patología , Factores de Tiempo , Transfección , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-22
14.
Metab Eng ; 29: 169-179, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25843350

RESUMEN

Cyclic guanosine monophosphate (cGMP) is a universal second messenger that is synthesized from guanosine triphosphate (GTP) by guanylyl cyclases (GCs) and hydrolyzed into guanosine monophosphate (GMP) by phosphodiesterases (PDEs). Small-molecule drugs that induce high cGMP levels in specialized tissues by boosting GC activity or inhibiting PDE activity have become the predominant treatment strategy for a wide range of medical conditions, including congestive heart failure, pulmonary hypertension, atherosclerosis-based claudication and erectile dysfunction. By fusing the cGMP receptor protein (CRP) of Rhodospirillum centenum to the Herpes simplex-derived transactivation domain VP16, we created a novel synthetic mammalian cGMP-sensing transcription factor (GTA) that activates synthetic promoters (PGTA) containing newly identified GTA-specific operator sites in a concentration-dependent manner. In cell lines expressing endogenous natriuretic peptide receptor A (NPR-A) (HeLa), GTA/PGTA-driven transgene expression was induced by B-type natriuretic peptide (BNP; Nesiritide(®)) in a concentration-dependent manner, which activated NPR-A׳s intracellular GC domain and triggered a corresponding cGMP surge. Ectopic expression of NPR-A in NPR-A-negative cell lines (HEK-293T) produced high cGMP levels and mediated maximum GTA/PGTA-driven transgene expression, which was suppressed by co-expression of PDEs (PDE-3A, PDE-5A and PDE-9A) and was re-triggered by the corresponding PDE inhibitor drugs (Pletal(®), Perfan(®), Primacor(®) (PDE-3A), Viagra(®), Levitra(®), Cialis(®) (PDE-5A) and BAY73-6691 (PDE-9A)). Mice implanted with microencapsulated designer cells co-expressing the GTA/PGTA device with NPR-A and PDE-5A showed control of blood SEAP levels through administration of sildenafil (Viagra(®)). Designer cells engineered for PDE inhibitor-modulated transgene expression may provide a cell-based PDE-targeting drug discovery platform and enable drug-adjusted gene- and cell-based therapies.


Asunto(s)
Proteínas Bacterianas , Proteínas Portadoras , GMP Cíclico/metabolismo , Regulación de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular , Rhodospirillum centenum/genética , Citrato de Sildenafil/farmacología , Animales , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Proteínas Portadoras/biosíntesis , Proteínas Portadoras/genética , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/biosíntesis , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones
15.
Mol Cell ; 55(3): 397-408, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-25018017

RESUMEN

All metabolic activities operate within a narrow pH range that is controlled by the CO2-bicarbonate buffering system. We hypothesized that pH could serve as surrogate signal to monitor and respond to the physiological state. By functionally rewiring the human proton-activated cell-surface receptor TDAG8 to chimeric promoters, we created a synthetic signaling cascade that precisely monitors extracellular pH within the physiological range. The synthetic pH sensor could be adjusted by organic acids as well as gaseous CO2 that shifts the CO2-bicarbonate balance toward hydrogen ions. This enabled the design of gas-programmable logic gates, provided remote control of cellular behavior inside microfluidic devices, and allowed for CO2-triggered production of biopharmaceuticals in standard bioreactors. When implanting cells containing the synthetic pH sensor linked to production of insulin into type 1 diabetic mice developing diabetic ketoacidosis, the prosthetic network automatically scored acidic pH and coordinated an insulin expression response that corrected ketoacidosis.


Asunto(s)
Dióxido de Carbono/metabolismo , Cetoacidosis Diabética/fisiopatología , Técnicas Analíticas Microfluídicas/métodos , Receptores Acoplados a Proteínas G/genética , Biología Sintética/métodos , Animales , Células CHO , Línea Celular , Trasplante de Células , Cricetulus , Cetoacidosis Diabética/terapia , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Ratones , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal
16.
Metab Eng ; 21: 81-90, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24280297

RESUMEN

In recent years, using trigger-inducible mammalian gene switches to design sophisticated transcription-control networks has become standard practice in synthetic biology. These switches provide unprecedented precision, complexity and reliability when programming novel mammalian cell functions. Metabolite-responsive repressors of human-pathogenic bacteria are particularly attractive for use in these orthogonal synthetic mammalian gene switches because the trigger compound sensitivity often matches the human physiological range. We have designed both a bile acid-repressible (BEAROFF) as well as a bile-acid-inducible (BEARON) gene switch by capitalizing on components that have evolved to manage bile acid resistance in Campylobacter jejuni, the leading causative agent of human food-borne enteritis. We have shown that both of these switches enable bile acid-adjustable transgene expression in different mammalian cell lines as well as in mice. For the BEAROFF device, the C. jejuni repressor CmeR was fused to the VP16 transactivation domain to create a synthetic transactivator that activates minimal promoters containing tandem operator modules (Ocme) in a bile acid-repressible manner. Fusion of CmeR to a transsilencing domain resulted in an artificial transsilencer that binds and represses a constitutive Ocme-containing promoter until it is released by addition of bile acid (BEARON). A tailored multi-step tuning program for the inducible gene switch, which included the optimization of individual component performance, control of their relative abundances, the choice of the cell line and trigger compound, resulted in a BEARON device with significantly improved bile acid-responsive control characteristics. Synthetic metabolite-triggered gene switches that are able to interface with host metabolism may foster advances in future gene and cell-based therapies.


Asunto(s)
Ácidos y Sales Biliares/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Transgenes , Animales , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Células CHO , Células COS , Campylobacter jejuni/genética , Chlorocebus aethiops , Cricetinae , Cricetulus , Células HEK293 , Células HeLa , Proteína Vmw65 de Virus del Herpes Simple/biosíntesis , Proteína Vmw65 de Virus del Herpes Simple/genética , Humanos , Ratones , Proteínas Recombinantes de Fusión/genética , Proteínas Represoras/biosíntesis , Proteínas Represoras/genética
17.
Nat Commun ; 4: 2825, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24281397

RESUMEN

Diet-induced obesity is a lifestyle-associated medical condition that increases the risk of developing cardiovascular disease, type 2 diabetes and certain types of cancer. Here we report the design of a closed-loop genetic circuit that constantly monitors blood fatty acid levels in the setting of diet-associated hyperlipidemia and coordinates reversible and adjustable expression of the clinically licensed appetite-suppressing peptide hormone pramlintide. Grafting of the peroxisome proliferator-activated receptor-α onto the phloretin-responsive repressor TtgR produces a synthetic intracellular lipid-sensing receptor (LSR) that reversibly induces chimeric TtgR-specific promoters in a fatty acid-adjustable manner. Mice with diet-induced obesity in which microencapsulated cells engineered for LSR-driven expression of pramlintide are implanted show significant reduction in food consumption, blood lipid levels and body weight when put on a high-fat diet. Therapeutic designer circuits that monitor levels of pathologic metabolites and link these with the tailored expression of protein pharmaceuticals may provide new opportunities for the treatment of metabolic disorders.


Asunto(s)
Redes Reguladoras de Genes , Genes Sintéticos , Terapia Genética/métodos , Obesidad/genética , Obesidad/terapia , Animales , Dieta/efectos adversos , Ácidos Grasos/sangre , Femenino , Ratones , Obesidad/etiología , PPAR alfa/genética , PPAR alfa/fisiología , Transgenes
18.
Proc Natl Acad Sci U S A ; 110(45): 18150-5, 2013 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-24127594

RESUMEN

Synthetic biology has significantly advanced the design of synthetic trigger-controlled devices that can reprogram mammalian cells to interface with complex metabolic activities. In the brain, the neurotransmitter dopamine coordinates communication with target neurons via a set of dopamine receptors that control behavior associated with reward-driven learning. This dopamine transmission has recently been suggested to increase central sympathetic outflow, resulting in plasma dopamine levels that correlate with corresponding brain activities. By functionally rewiring the human dopamine receptor D1 (DRD1) via the second messenger cyclic adenosine monophosphate (cAMP) to synthetic promoters containing cAMP response element-binding protein 1(CREB1)-specific cAMP-responsive operator modules, we have designed a synthetic dopamine-sensitive transcription controller that reversibly fine-tunes specific target gene expression at physiologically relevant brain-derived plasma dopamine levels. Following implantation of circuit-transgenic human cell lines insulated by semipermeable immunoprotective microcontainers into mice, the designer device interfaced with dopamine-specific brain activities and produced a systemic expression response when the animal's reward system was stimulated by food, sexual arousal, or addictive drugs. Reward-triggered brain activities were able to remotely program peripheral therapeutic implants to produce sufficient amounts of the atrial natriuretic peptide, which reduced the blood pressure of hypertensive mice to the normal physiologic range. Seamless control of therapeutic transgenes by subconscious behavior may provide opportunities for treatment strategies of the future.


Asunto(s)
Dopamina/sangre , Portadores de Fármacos/administración & dosificación , Regulación de la Expresión Génica/efectos de los fármacos , Ingeniería Genética/métodos , Hipertensión/tratamiento farmacológico , Recompensa , Animales , Línea Celular , AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Dopamina/farmacología , Humanos , Ratones , Monitoreo Fisiológico/métodos , Receptores de Dopamina D1/genética
19.
Sci Rep ; 3: 2610, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24018943

RESUMEN

The simplification of current vaccine administration regimes is of crucial interest in order to further sustain and expand the high impact of vaccines for public health. Most vaccines including the vaccine against hepatitis B need several doses to achieve protective immunization. In order to reduce the amount of repetitive injections, depot-based approaches represent a promising strategy. We present the application of novobiocin-sensitive biohybrid hydrogels as a depot for the pharmacologically controlled release of a vaccine against hepatitis B. Upon subcutaneous implantation of the vaccine depot into mice, we were able to release the vaccine by the oral administration of the stimulus molecule novobiocin resulting in successful immunization of the mice. This material-based vaccination regime holds high promises to replace classical vaccine injections conducted by medical personnel by the simple oral uptake of the stimulus thereby solving a major obstacle in increasing hepatitis B vaccination coverage.


Asunto(s)
Preparaciones de Acción Retardada , Vacunas contra Hepatitis B/administración & dosificación , Hidrogeles , Aminocumarinas/química , Animales , Girasa de ADN/química , Femenino , Hepatitis B/inmunología , Hepatitis B/prevención & control , Hidrogeles/química , Ratones , Polietilenglicoles/química , Vacunación
20.
J Control Release ; 171(1): 57-62, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-23838153

RESUMEN

Functional biomaterials that detect and correct pathological parameters hold high promises for biomedical application. In this study we describe a biohybrid hydrogel that detects elevated concentrations of uric acid and responds by dissolution and the release of uric acid-degrading urate oxidase. This material was synthesized by incorporating PEG-stabilized urate oxidase into a polyacrylamide hydrogel that was crosslinked by the uric acid-sensitive interaction between the uric acid transcription factor HucR and its operator hucO. We characterize the uric acid responsiveness of the material and demonstrate that it can effectively be applied to counteract flares of uric acid in a mouse model. This approach might be a first step towards a biomedical device autonomously managing uric acid burst associated to gouty arthritis and the tumor lysis syndrome.


Asunto(s)
Sistemas de Liberación de Medicamentos , Urato Oxidasa/administración & dosificación , Ácido Úrico/metabolismo , Animales , Desoxirribonucleasa I/química , Células HEK293 , Humanos , Hidrogeles , Ratones , Polietilenglicoles/química , Urato Oxidasa/química , Urato Oxidasa/metabolismo , Ácido Úrico/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...